Drawing Triangles (7.G.2 Draw)

Using a ruler and protractor/angle ruler, draw and label the triangle with the following properties.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>(AB = 2 \text{ in.}, \angle CAB = 45^\circ \text{ and } AC = 1.5 \text{ in.})</td>
</tr>
<tr>
<td>2.</td>
<td>(\triangle ABC = 45^\circ, \angle BCA = 45^\circ), and (BC = 2.5 \text{ in.})</td>
</tr>
<tr>
<td>3.</td>
<td>(\angle BCA = 60^\circ, \text{ (BC = 1.5 \text{ in.}, \text{ and } AC = 1.5 \text{ in.}) })</td>
</tr>
<tr>
<td>4.</td>
<td>(\triangle ABC = 50^\circ, \angle BCA = 70^\circ), and (\text{ (BC = 2 \text{ in.}) })</td>
</tr>
</tbody>
</table>
Drawing Triangles (7.G.2 Draw)

Tips:
- Draw a quick sketch of the triangle with labeled vertices, lengths, and angles to help you get started
- $\angle abc$ could also be called $\angle b$

Tools:

To measure an angle with an angle ruler:
- First place the rivet over the vertex.
- Set the *center line* of the arm marked as a ruler on the first side of the angle.
- Swing the other arm counterclockwise until its center line lies on the second side of the angle.
- Read the angle measure on the circular ruler.

Another tool for measuring angles in degrees is the *protractor*. It is usually semi-circular and has a scale in degrees. The protractor below shows how to measure $\angle AVB$.
Unique, Not Unique, and Impossible Triangles (7.G.2 Identify)

1. A triangle has sides of 15 and 27. The measurement of the longest side is missing.
 Ted says that one possibility for the unknown side length is 50. Do you agree with Ted? Why or why not?

2. A triangle has sides of 15 and 27. The measurement of the longest side is missing.
 Ted says that one possibility for the unknown side length is 40. Do you agree with Ted? Why or why not?

3. Is a triangle with angle measures 40°, 30°, and 120° possible? Explain why or why not.

4. Is a triangle with angle measures 85°, 35°, and 60° possible? Explain why or why not.

5. A triangle has a 60° angle, a 60° angle and a side 2 centimeters in length.
 Select True or False for each statement about this type of triangle.

<table>
<thead>
<tr>
<th>Statement</th>
<th>True</th>
<th>False</th>
</tr>
</thead>
<tbody>
<tr>
<td>The triangle must be an equilateral triangle.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>More than one triangle can be made with these measures.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The triangle must contain an angle measuring 75°.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6. A triangle has a 40° angle, a 120° angle and a side 2.5 centimeters in length.
 Select True or False for each statement about this type of triangle.

<table>
<thead>
<tr>
<th>Statement</th>
<th>True</th>
<th>False</th>
</tr>
</thead>
<tbody>
<tr>
<td>The triangle must be an isosceles triangle.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>More than one triangle can be made with these measures.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The triangle must contain an angle measuring 20°.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Unique, Not Unique, and Impossible Triangles (7.G.2 Identify)

Impossible to Make a Triangle:

- If the sum of the two shorter sides is less than or equal to the length of the longest side

![Image of impossible triangles](image)

- If the sum of the angles in the triangle are less than or more than 180°

More than One Possible Triangle (not unique):

- If you are given 3 angles (angle - angle - angle, AAA)
- If you are given 2 sides and an angle, where the angle is not in between the sides (side -side-angle, SSA)
- If you are given 2 angles and a side or 2 sides and an angle, but not a specific order/arrangement

Unique Triangles:

- If you are given 3 side lengths, where the sum of the two shorter sides is greater than the length of the longest side (side-side-side, SSS)

![Image of unique triangles](image)

- If you are given a side in between two angles (angle-side-angle, ASA)

\[\angle ABC = 40°, \quad \angle BCA = 70°, \quad \text{and} \quad \overline{BC} = 1 \text{ in.} \]

- If you are given an angle in between two sides (side-angle-side, SAS)

\[\overline{AB} = 1 \text{ inch}, \quad \overline{BC} = 1.5 \text{ inch}, \quad \text{and} \quad \angle CBA = 35° \]
Angle Relationships (7.G.5)

For each problem, write and solve an equation to find the value of x. Then, use that value to find the measure of $\angle ABC$. The diagrams are not to scale.

1. $\angle ABC = \underline{\hspace{2cm}}$

![Diagram 1](image)

2. $\angle ABC = \underline{\hspace{2cm}}$

![Diagram 2](image)

3. $\angle ABC = \underline{\hspace{2cm}}$

![Diagram 3](image)

4. $\angle ABC = \underline{\hspace{2cm}}$

![Diagram 4](image)

5. $\angle ABC = \underline{\hspace{2cm}}$

![Diagram 5](image)

6. $\angle ABC = \underline{\hspace{2cm}}$

![Diagram 6](image)
Angle Relationships (7.G.5)

Definition:
Two angles are **complementary** if the sum of their measures is 90°.

Example:
Angle ABC is complementary to Angle CBD, so $5x + 2 + 33 = 90$.

Definition:
Two angles are **supplementary** if the sum of their measures is 180°.

Example:
Angle ABC is supplementary to Angle CBD, so $3 + 4x + 61 = 180$.

Definition:
Two angles are **vertical** if they are formed from two intersecting lines. Vertical angles are equal in measure.

Example:
Angle ABC is vertical to Angle DBE, so $2x + 1 = 49$.

Definition:
Two angles are **adjacent** if they have a common side and vertex.

Example:
Angle ABC, Angle CBD, and Angle DBA are adjacent so $2x + 27 + 45 + 206 = 360$.
Interior and Exterior Angles (8.G.5 part 1)

Find the measure of each angle labeled x.

1.

 2.

 3.

 4.

Use the equation to calculate the angle sum for the following polygons.

5. 24-sided polygon
6. 43-sided polygon

Find the measure of angle b.

7.
8.
Interior and Exterior Angles (8.G.5 part 1)

Definitions:
- **interior angle**: the angle inside a polygon formed by two adjacent sides of the polygon
- **exterior angle**: an extension of one side of the polygon at the vertex of a polygon

Examples:

![Interior angles](image1)

![Exterior angles](image2)

interior angle + exterior angles = 180°

Interior Angle Sum of a Polygon:

the equation relating the number of polygon sides (N) to the interior angle sum (T) is:

\[T = 180(N - 2) \]
Parallel and Transversal Angle Relationships (8.G.5 part 2)

Without using an angle ruler, find the missing angle measures (labeled with letters) in the diagrams below. Show any calculations. Figures may not be drawn to scale.

1.

\[
\begin{align*}
\angle b &= \text{ } \\
\angle c &= \text{ } \\
\angle d &= \text{ }
\end{align*}
\]

Without using an angle ruler, label the fourteen missing angle measures in the diagrams below. Show any calculations. Figures may not be drawn to scale.

2.

3.
Parallel and Transversal Angle Relationships (8.G.5 part 2)

<table>
<thead>
<tr>
<th>Definition</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corresponding Angles</td>
<td></td>
</tr>
<tr>
<td>- on the same side of two parallel lines</td>
<td>$\angle 1 = 142^\circ$</td>
</tr>
<tr>
<td>- on the same side of the transversal</td>
<td>$\angle 2 = 142^\circ$</td>
</tr>
<tr>
<td>- congruent (equal)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Definition</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternate Interior Angles</td>
<td></td>
</tr>
<tr>
<td>- between a pair of parallel lines</td>
<td>$\angle 1 = 61^\circ$</td>
</tr>
<tr>
<td>- on opposite sides of the transversal</td>
<td>$\angle 2 = 0^\circ$</td>
</tr>
<tr>
<td>- congruent (equal)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Definition</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternate Exterior Angles</td>
<td></td>
</tr>
<tr>
<td>- outside the parallel lines</td>
<td>$\angle 1 = 94^\circ$</td>
</tr>
<tr>
<td>- on opposite sides of the transversal</td>
<td>$\angle 2 = 94^\circ$</td>
</tr>
<tr>
<td>- congruent (equal)</td>
<td></td>
</tr>
</tbody>
</table>
Opposite Quantities (7.NS.1a)

1. Which of the following describe a situation where the combination results in zero? There may be more than one correct answer.

A. Alison ran 3.5 miles and burned 450 calories. When she finished she ate a taco that was 425 calories.

B. The chef made 4 dozen pancakes. There were 16 customers that ordered and ate 3 pancakes each.

C. Julie owes her sister $25. She gives her $17 on Tuesday and $8 on Friday.

D. The Math Magicians are playing Math Fever! They get a 100-point question wrong, a 250-point question right, and a 350-point question wrong.

E. In the desert, the temperature at noon was 112 degrees. Over the course of the next 10 hours, the temperature decreased 12 degrees per hour.

2. At right is a picture of an atom, and the protons and neutrons that make up the nucleus. A proton has a charge of +1, while an electron has a charge of −1. The charge of an atom at rest is zero. The element gold has 79 protons. How many electrons does it have?
Opposite Quantities (7.NS.1a)

Definition:

Each **negative number** can be paired with a **positive number**. These two numbers are called **opposites** because they are the same distance from zero on the number line, but in different directions.

![Number Line Diagram]

Examples:

Integers are also used in chemistry. For example, a hydrogen atom has one proton, which has a charge of $+1$, and one electron, which has a charge of -1. The total charge of a hydrogen atom is $+1 - 1$, or 0.

You owe Susie $9, and pay her $9.

In Math Fever, you get a 100-pt question right, then a 100-pt question wrong.
Real World Addition and Subtraction (7.NS.1b, 7.NS.1c)

Model the following number sentences using a number line. Find the answer to the number sentence.

1. \(-4 + 7 = \)
2. \(3 + (-9) = \)

3. A number line is shown below. The numbers 0 and 1 are marked on the line, as are two other numbers, \(a\) and \(b\). Assume the number line is drawn to scale.

Using the number line above, decide if each answer will be positive, negative, or zero.

\[a + b = \] \[b + 1 = \]

\[a - b = \] \[a \cdot b + 1 = \]

\[|a + b| = \] \[a - 2 = \]

4. Decide whether each of the following statements is true or false. Give examples to support your choice.

A. The sum of two negative numbers is always negative.

B. The sum of a positive number and a negative number is always negative.

C. The difference of two negative numbers is always negative.

D. A negative number minus a positive number is always negative.

5. Which of the following expressions below are equivalent to \(-15 + 12\)? Circle ALL that apply.

A. \(12 + 15\)
B. \(15 + (-12)\)
C. \(-15 - (-12)\)
D. \(-15 - 12\)
Real World Addition and Subtraction (7.NS.1b, 7.NS.1c)

Definition: Number Line Models

1. Scale the number line.
2. Draw a vertical segment above the number line for the 1st number.
3. If the operation is increasing, draw an arrow to the right; if the operation is decreasing, draw an arrow to the left.
4. The arrow should be the length of the 2nd number, and labeled.
5. Draw a vertical segment above the number line for the answer.
6. Complete the number sentence.

Examples:

\[
\begin{align*}
-10 + 3 &= -7 \\
8 + -2 &= 6 \\
-5 - 10 &= -15
\end{align*}
\]

Definition: absolute value

A number’s distance from zero on a number line, and the value of a number when its sign is ignored.

Example:

In some situations, such as driving, it makes more sense to describe an overall distance without including the direction. You can find the Arroyos’ overall distance by taking the absolute value of the difference between the two points on the number line.

You can write two absolute value expressions to represent the distance between 25 and 80:

\[|25 - 80| = |-55| = 55 \text{ and } |80 - 25| = |55| = 55\]

Definition: additive inverse

Any subtraction sentence can be rewritten as addition by changing the operation and changing the sign of the second number.

Example:

Rewrite this subtraction problem into an addition problem, then solve.

\[9 - (-12) = \underline{9 + 12} = 21\]
Addition and Subtraction of Rational Numbers (7.NS. 1d)

Find each sum or difference. Show work for problems with fractions and decimals.

1. \(-8 + -11 = \)
2. \(12 - 30 = \)
3. \(16 + -4 = \)

4. \(-15 - -7 = \)
5. \(-6 + -9 = \)
6. \(-3 - 5 = \)

7. \(-4 + 11 = \)
8. \(-6 - -14 = \)
9. \(8 + -15 = \)

10. \(-11.8 + 2.6 = \)
11. \(-6.1 - 3.998 = \)

12. \(-5.8 - -4.79 = \)
13. \(8.4 + -1.61 = \)

14. \(\frac{2}{3} - -2\frac{4}{9} = \)
15. \(3\frac{3}{5} + -2\frac{1}{2} = \)

16. \(-1\frac{1}{3} + 1\frac{4}{11} = \)
17. \(-3\frac{1}{6} - -2\frac{4}{9} = \)
Addition and Subtraction of Rational Numbers (7.NS. 1d)

Algorithm:

1. Ignore the signs and add the two numbers
2. Give the answer the sign of the two numbers

Example:

\[+2 + 7 = 9 \quad -6 + 5 = -1 \]

Algorithm:

1. Ignore the signs and subtract the two numbers
2. Give the answer the sign of the greatest absolute value

Example:

\[-2 + 7 = 5 \quad -6 + 5 = -1 \]

Algorithm:

1. Ignore the signs and subtract the two numbers
2. If the first number (with the sign) is greater, the answer is positive and if the second number (with the sign) is greater, the answer is negative

Example:

\[-2 - 7 = -5 \quad 5 - 6 = -1 \]

Example:

\[-2 - 7 = -9 \quad 5 - 6 = -11 \]
Real World Multiplication and Division (7.NS.2a, 7.NS.2b)

1. Use the distributive property to write an expression equal to each of the following expression. Solve parts (a) and (b).
 a. \(-3(7 + -9)\)
 b. \((-2 \cdot -6) - (-2 \cdot -11)\)
 c. \(4(x + -8)\)
 d. \(x(-10 + 1)\)

6. Mark takes 6 friends to play paintball. It costs $10.25 to play and $8.75 to rent the equipment, per person. Include units with your answer.
 a. Write a number sentence and find the total cost for all 7 people. Include units with your answer.
 b. Using the distributive property, write a new equivalent number sentence that finds the total cost.

7. A football team loses an average of 3 yards per play. How many yards have they lost after 4 plays? Show your work and include units with your answer.

8. Select ALL values equal to \(-\frac{2}{9}\).
 A. \(-\frac{2}{9}\)
 B. \(-\frac{2}{-9}\)
 C. \(-\frac{2}{9}\)
 D. \(-\frac{2}{9}\)
 E. \(-\frac{2}{-9}\)

9. Together, siblings Brandon, Brooke, Trent, and Trisha owe their parents $100. How much does each sibling owe if they share the debt equally? Show your work and include units with your answer.
Real World Multiplication and Division (7.NS.2a, 7.NS.2b)

Definition: distributive property

A math rule that shows how multiplication combines with addition or subtraction:

\[a(b + c) = ab + ac \quad \text{and} \quad a(b - c) = ab - ac \]

You can use the distributive property to go between factored form and expanded form.

Examples:

<table>
<thead>
<tr>
<th>factored form</th>
<th>expanded form</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-3(4 + 8))</td>
<td>((-3 \cdot 4) + (-3 \cdot 8))</td>
</tr>
<tr>
<td>(2(n - 6))</td>
<td>((2 \cdot n) - (2 \cdot 6))</td>
</tr>
</tbody>
</table>

\[-5(3 - 2) = -5 \cdot 3 - 5 \cdot 2\]

\((-6 \cdot 2) - (-6 \cdot 3) = -6(2 - 3)\)

\[-5(x + -2) = -5 \cdot x + -5 \cdot -2\]

\((-3 \cdot x) + (-3 \cdot 6) = -3(x + 6)\)

Notes:

Note on Notation You know that a rational number is any number that you can write in the form \(\frac{p}{q}\), where \(p\) and \(q\) are integers and \(q \neq 0\). When a rational number is negative, the negative sign can be associated with the numerator, the denominator, or the entire fraction. For positive integers \(a\) and \(b\),

\[
\frac{-a}{b} = \frac{a}{-b} = -\frac{a}{b}
\]

Example:

For example, suppose \(a = 6\) and \(b = 2\).

\[
\frac{-6}{2} = \frac{6}{-2} = -\frac{6}{2} = -3
\]
Multiplication and Division of Rational Numbers (7.NS. 2c, 7.NS. 2d)

Find each quotient or product. Show work for problems with fractions and decimals.

1. \(-8 \cdot 6 = \)
2. \(\frac{-45}{-5} = \)
3. \(-12 \cdot -4 = \)
4. \(-15 \div 3 = \)
5. \(7 \cdot -4 = \)
6. \(60 \div -6 = \)
7. \(8.31 \cdot -3.4 = \)
8. \(-3.3 \div 4 = \)
9. \(-7.7 \cdot -1.5 = \)
10. \(5 \frac{5}{6} \div -3 \frac{1}{3} = \)
11. \(-1 \frac{1}{4} \cdot 1 \frac{1}{2} = \)
12. \(-1 \frac{1}{2} \div -5 \frac{2}{5} = \)

Find the decimal equivalent. Show your work.

13. \(\frac{-7}{-12} = \)
14. \(\frac{5}{-8} = \)
15. \(\frac{-11}{3} = \)
16. \(\frac{-13}{-8} = \)
Multiplication and Division of Rational Numbers (7.NS. 2c, 7.NS. 2d)

Algorithm:

Multiply numbers with the **SAME SIGN**

1. Ignore the signs and multiply the numbers
2. The answer will be positive

Multiply numbers with the **DIFFERENT SIGNS**

1. Ignore the signs and multiply the numbers
2. The answer will be negative

Examples:

<table>
<thead>
<tr>
<th>Multiplication</th>
<th>Division</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2 \cdot 7 = 14$</td>
<td>$14 \div -7 = -2$</td>
</tr>
<tr>
<td>$-6 \cdot -5 = 30$</td>
<td>$30 \div 6 = 5$</td>
</tr>
</tbody>
</table>

Algorithm:

Divide numbers with the **SAME SIGN**

1. Ignore the signs and divide the numbers
2. The answer will be positive

Example:

<table>
<thead>
<tr>
<th>Division</th>
<th>Examples:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$-14 \div -7 = 2$</td>
<td>$-5 \div 6 = -0.833$</td>
</tr>
<tr>
<td>$30 \div 6 = 5$</td>
<td>$2 \div 5 = 0.4$</td>
</tr>
</tbody>
</table>

Algorithm:

1. Put numerator underneath
2. Put denominator in front
3. Use long division until process ends in zero or starts to repeat
4. If decimal is repeating, draw repeating line over the shortest repeating element

Examples:

<table>
<thead>
<tr>
<th>Division</th>
<th>Examples:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$-5 \div 6 = -0.833$</td>
<td>$2 \div 5 = 0.4$</td>
</tr>
</tbody>
</table>

Example:

$-5 \div 6 = -0.833$

$2 \div 5 = 0.4$
Order of Operations (7.NS.3)

Find the value of each expression. Show all steps.

1. \(-12 ÷ -2 \cdot (4 - 5)\)
2. \(2 - 6 - (-1 + 12 ÷ 3)\)

3. \(-4 \cdot -1 + (2 - -5)^2\)
4. \(6 - (16 ÷ (5 - 3)^2 + 5)\)

5. \(-3\frac{1}{6} \cdot \left(\frac{3}{2} - -1\frac{3}{4} - 2\frac{1}{4}\right)\)
6. \(3.1 \cdot (-2.3 - 0.4) - 1.083\)
Order of Operations (7.NS.3)

Algorithm:

Order of Operations

1. Compute all expressions within parentheses or brackets first.
 Note: To avoid confusion, you use brackets in sentences that contain many parentheses.
2. Compute all numbers with exponents.
3. Then compute all multiplications and divisions in order from left to right.
4. Then compute all additions and subtractions in order from left to right.

Rules

To prepare you for solving equations, here's how we will do Order of Operations on our assignments:

- only **one** computation per step
- after each computation, rewrite the number sentence
- simplify vertically \(\downarrow \) until you are left with one number

Examples:

\[
6 \cdot (3 - 5)^2 + 8 \\
6 \cdot (-2)^2 + 8 \\
6 \cdot 4 + 8 \\
24 + 8 \\
32
\]
Similar Figures Problems (7.G.1 Solve)

Each pair of polygons are similar. Find the missing side length. Show your work to find and use scale factor.

1. scale factor \(\frac{3}{8} \)
 missing side \(\frac{21}{8} \)

2. scale factor \(\frac{14}{8} \)
 missing side \(? \)

3. scale factor \(\frac{6}{3} \)
 missing side \(\frac{12}{6} \)

4. scale factor \(\frac{30}{15} \)
 missing side \(? \)

5. A figure has a perimeter of 35 meters and an area of 75 meters\(^2\). A larger similar figure is created using a scale factor of 2.5.
 a. What is the **perimeter** of the larger figure? Show your work.
 b. What is the **area** of the larger figure? Show your work.

6. A figure has a perimeter of 30 feet and an area of 54 meters\(^2\). A smaller similar figure is created using a scale factor of 0.75.
 a. What is the **perimeter** of the smaller figure? Show your work.
 b. What is the **area** of the smaller figure? Show your work.
Similar Figures Problems (7.G.1 Solve)

Notes:

One Method
Use the scale factor from one figure to the other.

Another Method
Use the ratios of the side lengths within each figure.

Examples:

Parallelograms ABCD and RSPQ are similar. Find the following measures.

1. angle D = 125° 2. angle R = 55° 3. angle S = 125°

Area and Perimeter

How do we find the perimeter of a figure, if we know the perimeter of a similar figure and the scale factor between the two?

original perimeter \cdot scale factor

How do we find the area of a figure, if we know the area of a similar figure and the scale factor between the two?

original area \cdot scale factor^2

Example:

7. A figure has a perimeter of 40 ft and an area of 51 ft^2. A similar figure is created using a scale factor of 1.5.
 a. What is the perimeter of the larger figure? Show your work.

 \[40 \cdot 1.5 = 60 \text{ ft} \]

 b. What is the area of the larger figure? Show your work.

 \[51 \cdot 1.5^2 = 114.75 \text{ ft}^2 \]
Making Scale Drawings (7.G.1 Reproduce)

1. Triangle B is sketched below. Triangle C is similar to Triangle B. The scale factor from B to C is 3.25. Draw and label Triangle C on the grid below.

2. Mug’s Hat and its coordinates are below. Apply a scale factor of \((2.5x, 2.5y)\) to find the new coordinates. Then, plot the coordinates of the similar figure on the grid at right.
Making Scale Drawings (7.G.1 Reproduce)

Examples:

<table>
<thead>
<tr>
<th>Point</th>
<th>Mug's Hat (x, y)</th>
<th>Hat 1 (2x, 2y) multiply both by 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>(1, 1)</td>
<td>(2, 2)</td>
</tr>
<tr>
<td>B</td>
<td>(9, 1)</td>
<td>(18, 2)</td>
</tr>
<tr>
<td>C</td>
<td>(6, 2)</td>
<td>(12, 4)</td>
</tr>
<tr>
<td>D</td>
<td>(6, 3)</td>
<td>(12, 6)</td>
</tr>
<tr>
<td>E</td>
<td>(4, 3)</td>
<td>(8, 6)</td>
</tr>
<tr>
<td>F</td>
<td>(4, 2)</td>
<td>(8, 4)</td>
</tr>
<tr>
<td>G</td>
<td>(1, 1)</td>
<td>(2, 2)</td>
</tr>
</tbody>
</table>

Draw a rectangle similar to Rectangle A, where the perimeter of the new rectangle is three times the perimeter of Rectangle A. Label the length and width.
Area of Composed Figures (7.G.6)

Find the area of the figures below by using the formulas for rectangles and triangles. Show all work.

1.

2.

3.

4.
Area of Composed Figures (7.G.6)

Formulas:

<table>
<thead>
<tr>
<th>Triangle Area</th>
<th>Rectangle Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>$area = \frac{bh}{2}$</td>
<td>$area = bh$</td>
</tr>
</tbody>
</table>

- *b* is triangle base, *h* is triangle height
- *b* is rectangle base, *h* is rectangle height

Examples:

1. \[a = 1 \cdot 4 + 2 \cdot 3 + 5 \cdot 6 = 40 \text{ cm}^2 \]
2. \[a = 2 \cdot 3 + 2 \cdot 8 + 5.5 \cdot 7 = 60.5 \text{ units}^2 \]
a (7.RP.1)
<table>
<thead>
<tr>
<th>Algorithm:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Examples:</th>
</tr>
</thead>
</table>
b (7.RP.2a)
<table>
<thead>
<tr>
<th>Algorithm:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examples:</td>
</tr>
</tbody>
</table>
c \((7.RP.2c)\)
<table>
<thead>
<tr>
<th>Algorithm:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examples:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
$d (7.RP.2d)$
<table>
<thead>
<tr>
<th>Algorithm:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Examples:</th>
</tr>
</thead>
</table>
$e (7.RP.3)$
e (7.RP.3)

<table>
<thead>
<tr>
<th>Algorithm:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Examples:</th>
</tr>
</thead>
</table>
f(7.EE.3)
`f(7.EE.3)`

Algorithm:

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
</table>

Examples:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>